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Introduction to SIFT

SIFT, aka scale invariant feature transform is a method for extracting
distinctive invariant features from images that can be used to perform
reliable matching between different views of an object or scene.

▶ Invariant to image scale and rotation

▶ Robust matching across a a substantial range of affine distortion,
change in 3D viewpoint, addition of noise, and change in
illumination

▶ Match with high probability against a large database of features
from many images
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Workflow

Figure 1: Generic Feature-based Approach

1. Find a set of distinctive keypoints

2. Define a region around each keypoint

3. Compute a local descriptor from the region

4. Match descriptors
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Overall picture of keypoint detection

Figure 2: Scale space construction [1]
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Gaussian pyramid

Figure 3: Gaussian pyramid construction

Convolve input image I with Gaussian G of various scale σ, following the
green arrow.

L(x , y , k lσ) = G (x , y , k lσ) ∗ I (x , y)

where k =
√
2 and l ∈ 0, 1, 2, 3, 4

After each octave, the Gaussian image is down-sampled by a factor of 2,
following the blue arrow.
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Approximation to LoG

The relationship between D and ∇2G can be understood from the heat
diffusion equation:

∂G

∂σ
= σ∇2G

∇2G can be computed from the finite difference approximation to ∂G
∂σ ,

using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G (x , y , kσ)− G (x , y , σ)

kσ − σ

and therefore,

G (x , y , kσ)− G (x , y , σ) ≈ (k − 1)σ2∇2G

This shows that when the DoG function has scales differing by a constant
factor, it already incorporates the σ2 scale normalization required for the
scale-invariant Laplacian.
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Difference of Gaussian

Figure 4: DoG pyramid construction

To detect stable keypoint, convolve image I with difference of
Gaussian:

D(x , y , k lσ) = L(x , y , k l+1σ)− L(x , y , k lσ)

where k =
√
2 and l ∈ 0, 1, 2, 3
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Local extrema detection

Figure 5: 26 comparisons in 3x3 regions at the current and adjacent scales

Each sample point is compared to its 8 neighbors in the current image
and 9 neighbors in the scale above and below.

To remove weak extrema: check against |D(x , y , σ)| > 0.03
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Principal curvature ratio

The principal curvatures can be computed from a 2x2 Hessian matrix
[2]:

H =

[
Dxx Dxy

Dyx Dyy

]
Let α be the larger eigenvalue and β be the smaller one(α = rβ):

Tr(H) = Dxx + Dyy = α+ β,

Det(H) = DxxDyy − (Dxy )
2 = αβ

Curvature ratio R for the corresponding point in the DoG pyramid:

R =
Tr(H)2

Det(H)
=

(α+ β)2

αβ
=

(r + 1)2

r

To remove edge points, check against a threshold

R > 12(r = 10)
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Principal orientation

Figure 6: Use the histogram of gradient directions

The orientation histogram has 36 bins covering the 360 degree range of
orientations. Each sample added to the histogram is weighted by its
gradient magnitude and by a Gaussian-weighted circular window with a σ
that is 1.5 times that of the scale of the keypoint. Peaks in the
orientation histogram correspond to dominant directions of local
gradients.
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Descriptor representation

Figure 7: Descriptor representation

▶ Rotation invariance: relate with the keypoint principal orientation

▶ Collect into 4× 4 orientation histograms with 8 orientation bins

▶ Bin value = sum of gradient magnitudes near that orientation

▶ Normalize feature vector to unit length to reduce effect of linear
illumination change.
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Image Registration

Image registration is the process of transforming different images of one
scene into the same coordinate system. These images can be taken at
different times (multi-temporal registration) and/or from different
viewpoints. The spatial relationships between these images can be rigid
(translations and rotations), affine (shears for example),
homographies.
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Keypoints matching

1. The best candidate match for each keypoint is found by identifying
its nearest neighbor in the database of keypoints from training
images.

2. The nearest neighbor is defined as the keypoint with minimum
Euclidean distance between feature vectors:

d(p,q) =

√√√√ n∑
i=1

(qi − pi )
2

3. Efficient nearest neighbor indexing with k-d tree [3].
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Normal equation

The affine transformation of [x y ]T to [u v ]T can be written as[
u
v

]
=

[
m1 m2

m3 m4

] [
x
y

]
+

[
tx
ty

]
where the model translation is [tx ty ]

T .

To solve for the transformation parameters, the equation above can be
rewritten to gather the unknowns into a column vector:


x y 0 0 1 0
0 0 x y 0 1

· · ·
· · ·




m1

m2

m3

m4

tx
ty

 =

 u
v
...



Ax = b

x can be determined by solving the normal equations,

x =
[
ATA

]−1
ATb
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Estimating homography using RANSAC

Figure 8: RANSAC algorithm[4] for fitting lines

1. Randomly choose s samples. Typically s is the minimum samples to fit
a model.
2. Fit the model to the randomly chosen samples, i.e. compute H.
3. Count inliers that fit the model within a measure of error ε.
4. Repeat Steps N times.
5. Choose the model that has the largest number inliers and recompute
H using all inliers.
Where s = 4 pairs of feature points and ε is acceptable alignment error in
pixels for homography.
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